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. Introduction

In a pipe, a laminar flow occurs when Reynolds number (Re) is less than 2000 and a
turbulent flow occurs when Re> 4000. In a turbulent flow, the fluid motion is
irregular and chaotic and there is complete mixing of fluid due to collision of fluid
masses with one another.

The fluid masses are interchanged between adjacent layers. As the fluid masses in
adjacent layers have different velocities, interchange of fluid masses between the
adjacent layers is accompanied by a transfer of momentum which causes additional
shear stresses of high magnitude between adjacent layers. The shear in turbulent
flow is mainly due to momentum transfer.

The contribution of fluid viscosity to total shear is small and is usually neglected. In
case of laminar flow, because of definite functional relationship ‘between shear stress
due to viscosity and velocity’ it has been possible to derive a mathematical
relationship for evaluation of energy dissipation or frictional head but such a simple
relationship does not exist for turbulent flow. However, to solve some of the
practical problems, efforts have been made to evolve semi-empirical theories of
turbulence.

Following points are worth noting about turbulent flow:

(i) The velocity distribution is more uniform than in laminar flow.

Turbulent

h \{ logarithmic)

Laminar
(parabolic)

(if) The velocity gradients near the boundary shall be quite large resulting in more
shear.

(iii) The flatness of velocity distribution curve in the core region away from the wall
is because of the mixing of fluid layers and exchange of momentum between them.
(iv)The velocity distribution which is paraboloid in laminar flow, tends to follow

power law and logarithmic law in turbulent flow.
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Part Three Turbulent Flow
(v)Random orientation of fluid particles in a turbulent flow gives rise to additional

stresses, called the Reynolds stresses.

(vi)Formation of eddies, mixing and curving of path lines in a turbulent flow results
in much greater frictional losses for the same rate of discharge, viscosity and pipe
size.

The turbulent motion can be classified as follows:

1) Wall turbulence. It occurs in immediate vicinity of solid surfaces and in the
boundary layer flows where the fluid has a negligible mean acceleration.

2) Free turbulence. It occurs in jets, wakes, mixing layers etc.

3) Convective turbulence. It takes place where there is conversion of P.E into
K.E. by the process of mixing (e.g. the turbulent flow in the annular space
between the concentric rotating cylinder, conventional flow between parallel
horizontal plates etc.).

2. Loss of Head Due to Friction in Pipe Flow—Darcy Equation

In case of turbulent flow through pipes it has been observed through experiments

that the viscous friction effects associated with fluid are proportional to:

(i) The length of the pipe, L, (ii)The wetted perimeter, P, and(iii)VV", where V is the

average velocity of flow and n is an index varying from 1.5 to 2.

(depending on the material and nature of the pipe surface); for commercial pipes

. Pipe
=2 (with turbulent flow) 9 - & "
! 1
—»i — D
> P — . 1P~ —>
— <
—», —
5 L .

Forces on a control volume in a pipe flow.

Propelling force on the flowing fluid between the two sections is
= (P] _P:.) A
(where, 4 = area of cross-section of the pipe)
Frictional resistance force = f" PLV
where, P = Wetted perimeter, and
V' = Average flow velocity.

f’ = Non-dimensional factor (whose value depends upon the material and nature of
the pipe surface), and
h, = Loss of head due to friction.

f
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Part Three Turbulent Flow

Under equilibrium conditions:

Propelling force=Frictional resistance force

i.e. (p1—p2) A=f" PLV?

Dividing both sides by weight density w, we have:

"
- L pry2
w

= £(£] L2

w\ 4 L/
h, = 28/’ (2] L = 2" X £x£ (D)

S w \4) 2g w m 2g

and after simplify (In case of a circular pipe), we have:

L v 4av?
r’ ZOX X = \/ (2
=573 28 " Dxag @

(The factor f is known as Darcy coefficient of friction.)

Eqgn. (2) is known as Darcy-Weisbach equation and it holds good for all t_)iple_s_cj_

flows provided a proper value of f is chosen.

u
Sometimes eqn. (2) is written as: e
ALV?
;{f" = —
Dx2g

where, f] 1s known as friction factor (f; = 4f)

Expression for co-efficient of friction in terms of shear stress.
ﬂ_

Refer to Fig.
(p, —p,) A = Force due to shear stress, T,

where, 1, = shear stress at the pipe wall
0 PIp
= Shear stress (1) > surface area

= 1, * DL
or, (.pl_ pg) %Dz = TO x T[D.L
D
OL (Pl—Pz)? = Tl
4tyx L
or, -p,) = (3
®,—py) D (3)
and after simplify, we have:ﬂ/,, P For?
TxX oW X
Ty = = pe _JP 5 (@)]

20 2g 2

[f: pz;g ] / L[5 (®)]
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Part Three Turbulent Flow
3. CHARACTERISTICS OF TURBULENT FLOW

The turbulent flow is characterized by random, Irregular and haphazard movement

of fluid particles. It has been observed during experimentation that at any fixed
point in turbulent field, the velocity and consequently the pressure fluctuates with

time about a mean value.

I - /W\/N/HL

“—-.I

[—»

Variation of u with time t at a point in turbulent flow.

The instantaneous velocity i.e. velocity at any time at the given point can be expressed as:

u= u+u' ...(6)
where, u = Instantaneous velocity,
u = Time average or temporal mean velocity, and

u Velocity fluctuation (fluctuating component).

Similarly, v= v+,
W= w4,
and, p=p+p (7

From the definition of average-ve]ocities we have:

— Iudr = HL/ 1 ;i:
4 1 _/: r '/ .(8)
T ‘[wdr = T I

0 0

! VAT v

10, _ 1 L
—J.Hdr=u'=0; — | vdi=v'=0;
T : TT@
and, < 1 r N ..(9)
— | Wdt=Ww=0. —|pdt=p'=
_[ T DP P

where, T'= Large interval of time.
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Part Three Turbulent Flow
Magnitude of turbulence = Arithmetic mean of root-mean square value of turbulent fluctuations

in the three directions
2, TR, 2
u-+vo 4w
= \/ [ 3 ] .(10)

2 12 12
Jh‘ + v +w
- 3 -(11)

>
where, V' = Line average resultant velocity at the point.

Intensity of turbulence

For describing the turbulence fully, besides the intensity of turbulence, the average
size of the eddy is also necessary which can be obtained from the curve of velocity
variation with time (as shown in Fig.) by multiplying the average time interval at
which the curve crosses the mean value, with the average velocity of flow.
4, SHEAR STRESSES IN TURBULENT FLOW
In turbulent flow, as stated earlier, velocity fluctuations cause momentum transport
which results in developing additional shear stresses of high magnitude between
adjacent layers of the fluid. In order to determine the magnitude of the turbulent shear
stress a number of semi-empirical theories have been developed some of which are
discussed below.
4-1 Boussinesq’s Theory
According to this theory, the expression for the shear stress, t; for the turbulent flow
can be written as:
C g T
¢ d

where 1 (eta) is called “eddy” viscosity, and u 1s the temporal mean velocity in the direction of
flow at a point at distance y from the solid boundary.

(12

Similar to kinematic viscosity v = B the “eddy” kinematic viscosity € (Greek ‘epsilon’) is

p

also obtained by dividing eddy viscosity 1, by the mass density of the fluid p, thus,
E = ﬂ
p

When viscous action is also included, the total shear stress may be expressed as :
T = ‘tl.'l + TT
(where 1, = shear stress due to viscosity)

du du
or, T= U—+1N— ..(13)

dy dy
The magnitude of 1) may vary from zero (if the flow is laminar) to several thousand times that

of n. As the values of | and € cannot be predicted, the Boussinesq’s equation has a limited use.
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Part Three Turbulent Flow
4-2 Reynolds Theory

According to this theory (1886), the turbulent shear stress between two layers of a fluid at a
small distance apart 1s given as;

T=pu'v’ ..(14)
where u’ and v’ are the fluctuating components of velocity in the directions of x and y due to
turbulence.

Since both # " and v’ vary and subsequently 1 also varies, therefore, to find the shear stress, the
time average 1s taken and eqn. (14) becomes:

T = pu'v ..(15)
4-3 Prandtl’s Mixing Length Theory

According to Prandtl (1925), the mixing length (/) is defined as the average lateral distance
through which a small mass of fluid particles would move from one laver to the other adjacent layers
before acquiring the velocity of the new layer. He assumed that components " and v’ are of the
same order and the velocity fluctuation in X-direction is related to the mixing length as:

w =1

dy

2
uxv = uv= .-’ﬁ x Id“ =]’ du '.'u’:;Fﬁ
dy dy dy dy

Substituting the value of #' v’ in eqn. (15), we get:

(] )

When the viscous action is also included the total shear stress may be expressed as :

a
- i du |
T = N T + pl? [d’v] (17)

Egn. (17) is used for most of the turbulent flow problems for determining the shear stress
(viscous shear stress is negligible except near the boundary).

5. UNIVERSAL VELOCITY DISTRIBUTION EQUATION
Assuming the viscous shear stress to be negligible near the boundary the shear stress
in turbulent flow is given by the egn. (16). From this equation, we can obtain velocity

distribution if the relation between I, the mixing length, and y is known,

Also I a y (from the pipe wall) ...Prandtl’s hypothesis
or, I =y

where, A = a constant of proportionality, known as ‘Karman universal constant’ (= 0-4).
Substituting the values of / in eqn. (16), we get:

2 2
Tort = px (j?'gu)j X [%J = p)lzy2 (ij ()

Assuming that the turbulent shear stress remains constant in the vicinity of wall, we have

T = 13 (ty= the boundary shear stress)
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Part Three Turbulent Flow

2
2 2 dh‘ B
fo P“"(EJ

du _ 1 |15 _ 1 y
or, & wA p -uf[}..yJ -..(i)

The eqn. (i) becomes:

{where, uy = shear friction velocity or shear velocity = J %]:l

1
or, du = us| — |dy ...(1i)
! (ly}

(uf is constant for a given case of turbulent flow)
Integrating the other equation, we get:

w=Lmm+c -(18)

(where, C = constant of integration)

Eqn. (18) shows that velocity distribution in turbulent flow is logarithmic i nature.
The constant of integration C is determined by the boundary condition.

At y=R (radius of the pipe). u=u_ .

By substituting the above values in eqn. (18), we have:

Ur
Upax = In(R)+ C
“f
or C = ”max_Tln(R)

Substituting this value of C in eqn. (18), we get:

u u
u = Tf In(y) + up,, — Tf In(R)

Ilf
= Upx + R [In(y) - In(R)]

u ’

f )

: B +—In| =
%5 = Hmax A (R)

Taking A = 04, we get:

[ U= Uyae+2-Sup ln(%) ] --(19)

Eqgn. (19) is called Prandtl’s universal distribution equation. This equation is applicableto
smooth as well as rough boundaries.

This equation (19) may be written in non-dimensional form:

Umax — U _ 7-51n(£)
Ur y

( R) The difference (Umax—U) is known
5-75 logy, >

as the velocity defect.
|Pagesl



Part Three Turbulent Flow
Example 1. In a pipe of 360 mm diameter having turbulent flow, the centre-line velocity is7
m/s and that at 60 mm firom the pipe wall is 6 m/s. Calculate the shear friction velocity.

?=18{}mm=0«18m

Solution. Radius of the pipe

Centre-line velocity, 1, = 7 m/s

Velocity at 60 mm (i.e. distance v), 1 = 6 m/s
Shear velocity, Uy
We know, Ymax 71— 575 log,, [EJ ...[Eqn. (20)]
] 15
f J
726 _ 575 log,, (w} 2.743
Us 0-06

U = 0-36 m/s (Ans.)

Example 2. A pipe of 100 mm diameter is carrying water. If the velocities at the pipe
centre and 30 mm from the pipe centre are 2.0 m/s and 1.5 m/s respectively and flow in the pipe is
turbulent, calculate the wall shearing stress.

Solution. Given : R = @ =50mm=0.05m; u_._ =2.0 m/s;

-

Velocity at r=30mmory=R—-r=50-30=20 mm, ¥ = 1.5 m/s.
Wall shearing stress, 7,:

Yuax "1~ 5 75 1og,, [EJ [Eqn. (20)]
”f ¥y

(where, U= shear velocity)

Substituting the values, we get: 20-15 =5.75log,, 0.05 =2.288
Uy 0.02
= 2.0-15 =0.218 m/s
2.288
Using the relation: iy = r
\J p
T
or, 0.218 = 0 -+ p for water = 1000 keg/m’
1000 (op g/m’)
or, 1, = 47.524 N/m’ (Ans.)
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Part Three Turbulent Flow
6. HYDRODYNAMICALLY SMOOTH AND ROUGH BOUNDARIES

Refer to Fig. If ‘k’ is the average height of the irregularities of the surface of a

boundary, then in general, the boundary is said to the rough if the value of ‘k’
compared to the thickness of the laminar sublayer 6’ is high and smooth if ‘k’ is low

(in comparison with §").
F 3

Turbulent boundary layer

5 Laminar sublayer
VD B D oo
h 4 _

(a) Smooth boundary

I Turbulent boundary layer
Laminar sublayer
)
lL__ Ao Do Dy A I
1 2
0 7
? (b) Rough boundary
Through experiments Nikuradse found that the boundary behaves as:
. k
(HHydrodynamically smooth boundary ...when 5 <0-25,
(ii) Hydrodynamically rough boundary ...when {g] > 6-0, and
. .. k
(7if) Boundary 1n transition ...when 0-25 < (gJ < 6-0.
u fif s
In terms of roughness Reynolds number :
“!
usk
(i) For smooth boundary . =<4,
YV
. usk
(i) For rough boundary ... —>100, and
Vv
i . u fk _
(7if) For boundary in transition stage ... —— lies between 4 and 100.

‘l!‘
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Part Three Turbulent Flow
6-1. Velocity Distribution for Turbulent Flow in Smooth Pipes

The velocity distribution for turbulent flow in pipes in given by Egn. 18 as :

oy I (v) 4 €
= —In(y+
’ :
The peculiarity for this velocity distribution is that at the boundary, that is for y = 0, it gives

velocity 1 equal to — oo (minus infinity). Thus it is only at a certain finite distance above the boundary
say v =/, that the velocity will be zero, hence the above equation becomes:

”f ,
0=—=—h(N+C
A
Hf .
or, C=-—In(y)
A
Substituting the value of C in the above equation and simplified the result, we get:

y

It has been observed from Nikuradse’s experimental studies of turbulent flow in smooth pipes

Usy
that for turbulent flow in smooth pipes of any size the value of the parameter [LJ fory=290"1s
. . . v
approximately 11-6 and for y =" it is approximately 0-108.

U0 .6V
ie. Y% Z 116 or =110 (22)
v “f
uey'
and, = = 0.108
v
or, V' = 071081-'(: 0 J ..(23)
Uy 107
Substituting the value of ' [: 0-108 v} in eqn. 21, we get:
U
f
u v
w; 3:75 logy | 508y
Hf
- 5.751 Y s 7510g,,| L2 | =575 1og. (0.108)
270810 g q0gy 70 00RO T 1270810
u -
or. L~ 5.751og,, [—f y)+ 5-5] (24)
Hf v

The egn. (24) is known as Karman-Prandtl equation for the velocity distribution near
hvdrodynamically smooth boundaries.
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Part Three Turbulent Flow
6-2Velocity Distribution for Turbulent Flow in Rough Pipes

As shown in Fig. above (b), the thickness of laminar sublayer is very small, the
surface irregularities are above the laminar sublayer and hence the laminar sublayer is
completely destroyed. From the experiments conducted by Nikuradse and others,
using pipes artificially roughened by cemented coatings of sand grains
(irregularities/projections) of diameter k, it has been found that y’ is directly found
proportional to k and y'= k/30.

Substituting this value of y’ in egn. (21), we get:

i V
= 575 log,, (Wk) + 5-75 log,, 30
H
[u— = 575 log,, (V/K) + 8-5 .(25)
f

The egn. (25) is known as Karman-Prandtl equation for the velocity distribution

near hydrodynamically rough boundaries.

.. . T
where, Uy = Shear friction velocity = | -2,
p
v = Kinematic viscosity of the fluid,
v = Distance from the pipe wall, and

k = Roughness factor.

Read Examples 11-3 — 11.6 in Ref 4.
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Part Three Turbulent Flow
7. COMMON EQUATION FOR VELOCITY DISTRIBUTION FOR BOTH

SMOOTH AND ROUGH PIPES

Refer Fig. 5. Consider an elementary circular ring of radius » and thickness dr as shown in
Fig. 5. The distance of the ring from the pipe wall,

Pipe

Fig. 5. Average velocity for turbulent flow.
vy =R-r
(where, R = radius of the pipe).
The discharge through the ring is given by:
dQ = Area of the ring x velocity

= 2uardr x u

R
Total discharge, O = de = Iu x 27y - dr
0

(i)For smooth pipes:

Substituting the value of # in eqn. (28), we get:

2 up(R—r)
Q=J. 5.75 logyg—L-—— + 5.5 |u,x 277 . dr
0
.. =_0 _ 0
Aver rel L U=—=
verage velocity. A R
R
_ 1 ues(R—-r
U=— I{S.TS logmu+ 5.5] upx 2mr . dr
mR” v

After integration and simplification, we have:

U usR
[ =575 logwf—+1.?5] .(27)
H'f v
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(i)For rough pipes:

Substituting the value of 1 in eqn. (26), we get:

R
R-r
= |us| 57510 +8.|2nr - dr
o I _f[ gm( a J ] nr - ar
0
o 1 7 R—r
Average velocity, ;7 = - = ) ﬂuf [5.?5 lugm(TJ + 8.5} 2nr - dr
After integration and simplication, we have:
U R
— = 575 1ogm(—]+ 4.75 .(28)
s k

From eqns. (24) and (27) by subtraction, we have:

i He-V usR
L= =575 logm{ ! J+5.5 —|5.75 logy —L— +1.75
Up Up v v

u-U
Andthen "7
Similarly, from egns. (25) and (28), we get:

= 5.75 lﬂgm(%] +3.75 ()

MY |55 1ogm(ﬁ]+s.5 _|5.75 logm(EJ+4.?5
urp g k k

u-U

5.75 1Ggm[i] +3.75 (i)
U g R

As eqns. (7) and (77) are identical, the velocity distribution in both types of pipes is the same.

N ,.
{” — 575 1c.gm[i] +375 ] .(29)
U g R

The common equation holds good for both types of pipes due to the reason that the velocity
distribution for the turbulent core is identical in both cases.

Read Examples 11-7 in Ref 4
8. VELOCITY DISTRIBUTION FOR TURBULENT FLOW IN SMOOTH PIPES
BY POWER LAW

The eqns. (20), (24) and (25) of velocity distribution for turbulent flow are
inconvenient to use, being logarithmic in nature. Nikuradse, through experiments,
established the following velocity distribution law (exponential form) for smooth
pipes: 1
i Vom
— = | = --(30
U e (RJ (30)

where, exponent — depends on Reynolds number (Re) and it decreases with the increasing Re.
n
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For: Re = 400, lzl
n 6

Re = 1.1><1(:F’,1=l

n 7

Re > 2x10° L - L

n 10

Therefore, for 1 = 1 . the velocity distribution law becomes:

! u s
— = | = (31
1l [RJ (1)

Eqn. ( 31) is known as - th power law of velocity distribution for smooth pipes.

9. RESISTANCE TO FLOW OF FLUID IN SMOOTH AND ROUGH PIPES
When a fluid flows through a pipe frictional resistance is offered to the motion of the
fluid and the loss of head due to friction is expressed by Darcy-Weisbach equation.
But the loss of head can be predicted correctly only if the friction coefficient can be
evaluated accurately. It can be shown by dimensional analysis that the friction
coefficient f depends upon the Reynolds number and the ratio k/D thus,

_ pVD\ k
f= d?KTJE] ...(32)

The co-efficient of friction is given by:

16 :
f = 2o ...for laminar flow
e
= ?0;31 for turbulent flow in smooth pipes
Re
for Re > 4000 but < 10°
= 0.0008 + (0'0;-% for Re > 10° but <4 x 10’

——= = 2log,,(R/k) +1-74 forroughpipes (where, Re=Reynolds number)

W Re/k

Read & resolve examples in ch.11 ref. 04
Solve HW -04

|Pages8



